
SYNTHESIS OF 3,4-DIHYDROISOXAZOLES — DERIVATIVES OF ω -CARBONYL-SUBSTITUTED 1,3,3-TRIMETHYL-2-METH-YLENEINDOLINES AND THEIR CHEMICAL REACTIONS

A. A. Tolmachev, L. N. Babichenko, and A. K. Sheinkman

Stable spiro compounds containing a dihydroisoxazole ring are formed by the reaction of ω -carbonyl-substituted 2-methyleneindolines with hydroxylamine. These compounds are converted in acid media into isoxazoles with scission of the indoline unit.

In a previous paper [1] we showed that the dihydroisoxazole IIa was formed by the reaction of ω -formyl-2methyleneindoline Ia with hydroxylamine. The present work is concerned with the synthesis of similar dihydroisoxazoles from ω -carbonyl-substituted 2-methyleneindolines and the study of their chemical reactions.

The carbonyl-substituted 2-methyleneindolines Ib-c were prepared by the reaction of 1,3,3-trimethyl-2-methyleneindoline with chlorides and anhydrides of carboxylic acids [2, 3] in the presence of base. Compounds Ib-f reacted with hydroxylamine in basic media to give the dihydroisoxazoles IIb-f (Table 1). This reaction did not occur with strong acceptor substituents (Ig, Ih). The cyclic structure of compounds IIb-f was established by ¹H and ¹³C NMR spectroscopy: In the ¹H NMR spectrum the CH₂ group signal appeared as two doublets (AB system) in the 2.8-3.5 ppm region (J = 18.0-18.6 Hz) (Table 2); in the ¹³C NMR spectra the chemical shift of C₍₂₎ at 112-115 ppm (Table 3) is most characteristic and is in agreement with literature values [4].

I, IIa) R = H; b) R = Me; c) R = CH₂Cl; d) R = C₆H₄OMe-p; e) R = Ph; f) R = C₆H₄NO₂-p; g) R = CCl₃; h) R = CF₃; IVd) R¹ = OMe; e) R¹ = H; f) R¹ = NO₂

We have previously established [1] that instantaneous scission of the dihydroisoxazole ring to form the oxime III occurred when compound IIa was dissolved in a mineral acid.

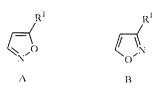
Institute of Organic Chemistry, Ukrainian Academy of Sciences, Kiev 252660. Dnepropetrovsk Structural Engineering Institute, Dnepropetrovsk 320092. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, 523-528, April, 1993. Original article submitted April 13, 1993.

Com- pound	Molecular formula	Imp., °C	Solvent	Yield, %
10	CµHucho	111113	Hexane	78
18	C14H14Cl3NO	8789	Petroleum ether	43
Пp	C14H18N2O	159161	Isopropano1	57
11 C	Caal HitCIN2O	8283	Hexane	31
IId	$C_{20}H_{22}N_2O_2$	157158	Isopropano1	82
IIe	C ₁₉ H ₂₀ N ₂ O	118119	Isopropanol	73
Нf	C19H19N3O3	173175	Ethanol	48
IVd	C20H22N2O2	105107	Washed w. methanol)	85
lVe	C19H20N2O	9698	Washed w. methanol	75
IVf	C10H10N3O3	164165	Washed w. methanol	90

TABLE 1. Characteristics of the Compounds Synthesized

A similar reaction was not observed with compounds IIb-f, which are analogs of IIa, but with a substituent on the carbon atom of the C = N group. The dihydroisoxazole IIb was recovered unchanged after dissolution in concentrated HCl. Under similar conditions compound IIc hydrolyzed to the initial carbonyl-substituted indoline Ic. The 3-arylisoxazoles IVd-f were obtained in quantitative yield on treatment of the dihydroisoxazoles IId-f with hydrochloric acid. In this case scission of the indoline ring occurs rather than the dihydroisoxazole ring. We isolated the similar 3-unsubstituted isoxazole IVa as a by-product (less than 10%) in the synthesis of the dihydroisoxazole IIa.

In the ¹H NMR spectra of compounds IVa, d-f (Table 2) the NH group signal (3.25-3.86 ppm) appears as a poorly resolved quartet in deuterochloroform and acetonitrile which is extinguished on addition of deuteromethanol. The N-CH₃ group appears as a doublet (J = 5.15 Hz) in the 2.5-2.7 ppm region in acetonitrile (compounds IVa, e). On irradiating the NH signal and when the spectrum is recorded in CDCl₃ solution the N-CH₃ doublet for compound IVa is converted to a singlet. The presence of the isoxazole ring in compounds IV is confirmed by the two doublets at 5.94 and 8.40 ppm (J = 1.8 Hz) (4-H and 3-H for IVa) or the singlet for the 4-H proton at 6.2-6.3 ppm in the ¹H NMR spectrum. The C₁₁, C₁₀, and C₂ carbon atoms of the isoxazole ring in compounds IVa, e, f appear at 151-163, 98-100, and 179-181 ppm respectively in the ¹³C NMR spectra. Literature data for the ¹H and ¹³C NMR spectra are cited in papers [5, 6].


The structure of the isoxazole IVa was confirmed by recording the ¹H NMR spectrum in the presence of the lanthanide shift reagent Eu(fod)₃. The following values for the lanthanide induced shifts were obtained: H_6 1.0; H_5 2.0; H_7 2.1; N-CH₃ 2.6; H_4 2.9; C_3 -CH₃ 4.0; NH 8.5; H_{10} 9.4; H_{11} 24.5. The large shift values for the isoxazole ring protons shows that, as expected [7], complex formation occurs at the isoxazole nitrogen atom. It is interesting that addition of the lanthanide shift reagent causes narrowing of the NH and N-CH₃ signals, which is an unusual occurrence.

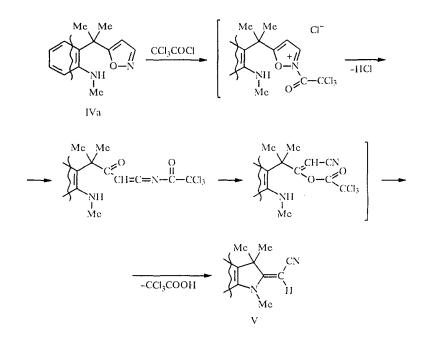
Heating compounds IVd-f at 150°C for 2 h leads to their partial conversion to the dihydroisoxazoles IId-f. The rate of conversion of an isoxazole to the corresponding dihydroisoxazole increases as the electron acceptor power of the substituent increases in the series OCH_3 , H, NO_2 . The content of the dihydroisoxazoles IId-f in the reaction mixtures was 40, 60, and 70%. This represents the thermodynamic equilibrium since further heating of the reaction mixture (6-8 h) did not cause changes in the ratio of compounds IV and II in the reaction mixture. Appearance of signals for the isoxazole IVe when the dihydroisoxazole IIe is heated also indicates a thermodynamic equilibrium:

IIe
$$\longrightarrow$$
 II-IV \checkmark ISO^oC, 2 h IVe (d-f)

The isoxazole to dihydroisoxazole ratios in the reaction mixtures were estimated from integration of the ¹H NMR spectral curves.

It is known that isoxazoles are formed when β -carbonyl-substituted enamines react with hydroxylamine [8-10]. The formation of dihydroisoxazoles as intermediates was postulated in the last paper [10]. The structures of the isoxazoles were not established unambiguously: structure A was written in papers [8, 9] and structure B in [10].

Com- pound	Solvent	3-(CII ₃) ₂ . S	8 °CH ³ '8	+-HIsos. (J. HZ)	7-II. đ	Other protons
ЧII	CDCI3	1,19:1,33	2.65	2,82: 3,12 (18,6)	6,50 (6,8)	2.04 (311, s 3-CH3 Isox); 6,79 (111, d.d. 5-11); 7,027,16 (211, m 4-11, 6-11)
	CF3COOD	1,69	4.13	:	1	2,44 (311, s 3-C11 ₃ lsox); 7,737,74 (411, m, Ar)
0 	coci,	1,22; 1,34	2.68	3.07, 3,22 (18.6)	6.52 (8.0)	4.30; 4,42 (211, d.d – C11 ₂ C1, $J = 12,2$ Hz 7,057,25 (311, m Ar)
١١d	CDCI ₅	1,30; 1,41	17.2	3.29, 3.51 (18.0)	6.45 (7,6)	3.86 (311, s. OCH ₃); 6.84 (111 d.d. 5-11); 6.97 (111, d. 4-11); 7.077.26 (311, m 6-11, <i>m</i> , <i>m</i> -11); 7.67 (211, d. <i>o</i> , <i>o</i> , 11)
lle	CDCI	1,29; 1,39	2,69	3.30: 3.53 (18.2)	6 54 (7.8)	6.84 (111, dd 5-11); 7.087.78 (711, m Ar)
	CFaCOOD	1.51	4,03	:	a.	7,507,61 (10H, m At)
۳ ۲	CDCI,	1,24; 1.33	2,62	3,25; 3,47 (18,0)	6,49 (7.6)	6.83 (111, d.d5-11); 7.037.21 (211, m 4-11, 6-11); 7.85 (211, d,m, m-11); 8.23 (211, d,o. o-11)
IVa	cDC1 3	1.75	2.65	5.94. d (1,8)	6.63	3.23 (11, m, N1D; 6.77 (111, d.d 5-1D; 7,22 (111, d.d.6-1D; 8,41 (111, d, 3-11 laws, J = 1,8
	CD ³ CN	1.63	2.53 (J = 5.15 Hz)	5.80, d (1,8)	۲ç.ð	3.41 (111. m.) MD: 6.71 (111, d·d 5-H); 6,97 (111, d·d 6-H); 7.28 (111, d ,4-H); 8.16 (111, d , 3-H Isox, J = 1.8 (10
рл	IVd CDC1 ₃	1.79	2.69	6.21	6.69	3,86 (111, m ₂ ,N11); (6,817,72 (711, m ₂ , Ar)
1ve	IVE CDC13	1.80	2.69	6.2"	6,66	3.51 (111, m, V1D; 6,80) (114, d, d, 5-1D; 7, 377,80) (711, m, Ar)
_	CD ³ CN	1.75	2.62 (J = 5.0 Hz)	0.70	6.63	3.64 (111, m) N1D: 6.74 (111, d-d , 5-1D: 7.20 (111, d-d 6-1D; 7.38 (111, d , 4-1D; 7.467.85 (511, m Ar)
۲ ۲	IV f CDC1 ₃	20 20 	2.70	5.34	6,68 (8)	3.30 (11, m ₅ /11); 6.81 (11, d·d 5-11); 7.27 (111, dd -6-11); 7.37 (111, d, 4-11), 7.97 (211, d, o, -11); 8.28 (211, d, m, -11)


TABLE 2. ¹H NMR Spectra of the Synthesized Compounds IIb-f and IVa, d-f (ô, ppm)

	Other carbon atoms	$ 48.2 153.6 (C_{(11)}), 13.5 (CH_3-C_{(11)})$	$153.5 (C_{(11)}); 41.9 (C11_2C1)$	126,4; 128,8; 129,7; 130,0; 154,8 (C ₍₁₁₎)	127.3; 124.4; 136.09; 136.7; 148.07; 148.68; 153,5 (C(1))	151.2 (C ₍₁₁₎)	126,7: 128,5; 128,6; 128,9; 129,1; 147,0; 162,6 (C ₍₁₁₎)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	C ₍₉₎	148,2	148,2	148,1	I	150,7	I	148,6
	C ₍₈₎	136.7	136.7	136,7		147,5	1	146,8
ppm)*	C(7)	107,2	107.6	107,2	107,6	112,1	111,6	111.7
e, f (ô,	C(6)	121,3 119,3 127,6 107,2	120.0 128.1	121,4 119.5 127.6	128,1	(99,8) 126,4 120.1 129,1	130.0	128.7
nd IVa,	⁽⁵⁾	119,3		119.5	120,1	120.1	116,9	117.1
c, e, f a	(5) C(5)		121.7	121,4	121.7	126,4	125,9	(98.3) 125.9 117.1 128.7
dls IIb,	CH ₂ (C(10))	38,9	38,8	35,1	34,6	(8,99)	(18,1)	(98,3)
TABLE 3. ^{13}C NMR Spectra of Compounds IIb, c, e, f and IVa, e, f (ô, ppm)*	C.(3)	45,8	46.5	45,9	46,5	39.2	39,1	39,2
	C (2)	112,6	115,1	113.7	115.5	179,6	180,0	181,3
	N - CH ₃ 3-(CH ₃)2	27,5; 28,4	33,4; 34,2	27.7; 28,4	28.7; 27,9	27,8	27,4	27.4
	N - CH3	19,4		19.4	19.6	31,2	30,9	30,9
TABLE	Com- pound	qII	llc	lle	Π£	IVa	<u>ا ۷ به</u>	IV É

ppm)*	
ŝ	
4-4	
e, f (
and	
رب لر	
 ວົ	
IIb, c, e, f	
Compounds	
Ŭ	
of	
ABLE 3. ¹³ C NMR Spectra of C	
MR	
Z	
^{13}C	
ы.	
EL)	
ABLI	

*The carbon atom numbering corresponds to that in the reaction scheme.

Subsequent literature data [11] show that the reaction may occur in two directions via A or B. In our case a strict choice between structures A and B in favor of B thanks to the conversion of the dihydroisoxazoles IId-f into the isoxazoles IVd-f and the thermal conversion of the latter into the dihydroisoxazoles IId-f. The isoxazole IVa was converted into the nitrile V [12] by trichloroacetyl chloride which also indicates that structure B is preferable. This conversion probably occurs as follows in agreement with literature data [13].

EXPERIMENTAL

¹H and ¹³C NMR spectra were recorded in CDCl₃, CD₃CN, and CF₃COOD solution with TMS as internal standard on a Varian instrument (200 MHz). The lanthanide shift reagent Eu(fod)₃ was manufactured by NPO "Reactive".

Elemental analysis results for compounds Ic, g, IIb-f, and IVd-f agreed with calculated values.

1,3,3-Trimethyl-2-methylene- ω -chloromethylacylindoline (Ic). Triethylamine (7 ml) and monochloroacetyl chloride (5.65 g, 5 mmoles) in benzene (10 ml) were added to 1,3,3-trimethyl-2-methyleneindoline (8.65 g, 5 mmoles) in benzene (10 ml). The reaction mixture was heated for 1 h at 60-80°C and the product was precipitated with hexane after removal of triethylammonium chloride.

1,3,3-Trimethyl-2-methylene- ω -chloromethylacylindoline (Ig) was prepared analogously to Ic.

Spiro-1',3',3'-trimethylindoline-(2':5)-3-methyl-4,5-dihydroisoxazole (IIb). A mixture of compound lb (17.2 g, 8 mmoles), and hydroxylamine hydrochloride (8.3 g, 12 mmoles) in pyridine (20 ml) and ethanol (45 ml) was heated for 3 h on a boiling water bath. Water saturated with sodium chloride (150 ml) and ether (50 ml) were added to the cooled reaction mixture. The organic layer was separated, the solvent evaporated and the product crystallized from isopropanol.

Spiro-1',3',3'-trimethylindoline-(2':5)-3-chloromethyl-4,5-dihydroisoxazole (IIc), spiro-1',3',3'-trimethylindoline-(2':5)-3-p-methoxyphenyl-4,5-dihydroisoxazole (IId), spiro-1',3',3'-trimethylindoline-(2':5)-3-phenyl-4,5-dihydroisoxazole (IIe), spiro-1',3',3'-trimethylindoline-(2':5)-3-p-nitrophenyl-4,5-dihydroisoxazole (IIf) were made analogously to IIb by the method described above.

3-p-Methoxyphenyl-5-(1-methyl-1-o-methylaminophenylethyl)isoxazole (IVd); 3-Phenyl-5-(1-methyl-1-omethylaminophenylethyl)isoxazole (IVe); 3-p-Nitrophenyl-5-(1-methyl-1-o-methylaminophenylethyl)isoxazole (IVf). Compound IId (e,f) (5 mmoles) was dissolved in concentrated HCl (10 ml) and kept at 20°C for 1 h, then poured over ice and neutralized with ammonia to pH 7 at 20-25°C. The precipitate obtained was washed with water and methanol.

5-(1-Methyl-1-o-methylaminophenylethyl)isoxazole (IVa) was obtained in 7% yield by fractional crystallization from heptane during the synthesis of compound IIa [1].

Thermal Reactions of Compounds IId-f, IVd-f. A compound (1 g) was heated at 150°C for 2 h. The reaction mixture was analyzed via the integrated curves from the ¹H NMR spectra.

REFERENCES

- A. A. Tolmachev, L. N. Babichenko, I. V. Komarov, S. V. Sereda, and A. K. Sheinkman, Khim. Geterotsikl. Soedin., No. 2, 183 (1992).
- 2. A. S. Bailey, J. M. Ellis, and J. M. Peach, J. Chem. Res. Synop., No. 11, 343 (1984).
- 3. V. N. Zemlyanoi, I. L. Mushkalo, M. Yu. Kornilov, I. E. Boldeskul, and M. L. Dekhtyar', Khim. Geterotsikl. Soedin., No. 3, 361 (1983).
- 4. A. S. Bailey, J. B. Haxby, A. N. Hilton, J. M. Peach, and M. H. Vandrevala, J. Chem. Soc., Perkin Trans., No. 4, 382 (1981).
- 5. R. E. Wasylishen, Can. J. Chem., 52, 833 (1974).
- 6. R. Nesi, A. Ricci, M. Taddei, and P. Tedeschi, J. Organomet. Chem., 195, 275 (1980).
- 7. Yu. M. Kornilov and A. V. Turov, Khim. Geterotsikl. Soedin., No. 10, 1299 (1979).
- 8. N. K. Kochetkov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 1, 47 (1954).
- 9. Yang-i Lin and S. A. Lang Jr., J. Heterocycl. Chem., 14, No. 2, 345 (1977).
- 10. G. Danahardt and I. Obergrusberger, Chem. Zeit., 113, 220 (1989).
- 11. R. K. Howe and B. R. Shelton, J. Org. Chem., 55, 4603 (1990).
- A. A. Tolmachev, L. N. Babichenko, I. V. Komarov, S. V. Sereda, and A. K. Sheinkman, Khim. Geterotsikl. Soedin., No. 4, 513 (1992).
- 13. A. A. Akhrem, F. A. Lakhvich, and V. A. Kripach, Khim. Geterotsikl. Soedin., No. 9, 1155 (1981).